Zeyu Ren is currently a robotics researcher at ByteDance Seed. His research interests include cobot arms, dexterous hands, actuators and humanoid robots. In 2019, he received his Ph.D degree in Robotics from Italian Institute of Technology under the supervision of Dr. Nikos G. Tsagarakis. His bachelor degree was obtained in Mechatronics Engineering from Zhejiang University in 2015.
PhD in Robotics, 2015 - 2019
Italian Institute of Technology (IIT), Italy
MEng in Mechatronics Engineering, CKC Honored College, 2011 - 2015
Zhejiang University (ZJU), China
Design and develop dexterous hands ByteDexter.
Design and develop ByteMini robots for GR-3 model.
Design and develop humanoid robot CyberOne.
Design and develop Cobot xMate CR7 for Industrial Application.
Developed General Integrated Actuator (GIA) for Cobots.
Developed HERI-II-H under-actuated hands for HyQ-Real robot.
Developed HERI-II-C under-actuated hands for CENTAURO robot.
Developed a 3-DoF Leg (e-Leg) for verfifying energy efficiency and explosive motion.
Developed small size soccer robots, participated RoboCup as a member in Team ZJUNlict.
We report our recent progress towards building generalist robot policies, the development of GR-3. GR-3 is a large-scale vision-language-action (VLA) model.
A hand-arm teleoperation system with a 20-DoF anthropomorphic hand and optimization-based motion retargeting addresses the key robotics challenge of replicating human-level dexterity, enabling real-time, high-fidelity motion reproduction and generating high-quality demonstration data as validated by experiments.
An imitation learning-based end-to-end sliding controller, using minimal object mechanics knowledge and only position info, is trained via GAIL with data glove-collected expert data. It shows versatility across objects in simulations and achieves 86% success in physical systems, outperforming BC (35%) and PPO (20%).
In this paper we present a novel implementation of hardware synergies realized on the actuation level by leveraging on a novel adjustable electric actuation topology principle.
This work proposes a novel optimization based controller that can accommodate various quadratic criteria to perform the torque distribution among dissimilar series and parallel actuators in order to maximize the motion efficiency.
This work presents the development, modeling, and control of a three-degree-of-freedom compliantly actuated leg called the eLeg, which employs both series- and parallel-elastic actuation as well as a bio-inspired biarticular tendon.
This paper presents the development of a disaster-response system that consists of the highly flexible Centauro robot and suitable control interfaces, including an immersive telepresence suit and support-operator controls offering different levels of autonomy.
In this letter, we introduce the design of a wheeled-legged mobile manipulation platform capable of executing demanding manipulation tasks, and demonstrating significant physical resilience while possessing a body size (height/width) and weight compatible to that of a human.
This paper presents the design and implementation details of an efficient robotic leg (eLeg) prototype in which series-elastic actuation is combined with adjustable parallel compliance to significantly improve its energy efficiency.
This paper introduces the design of a novel under-actuated hand with highly integrated modular finger units, which can be easily reconfigured in terms of finger arrangement and number to account for the manipulation needs of different applications.
This work presents the development of a 3-DoF leg with series and parallel compliant actuation. Series-elastic main actuators are combined with parallel high efficiency energy storage branches, to substantially improve energy efficiency.
This paper describes a novel tendon driven three-finger under-actuated hand, which demonstrates balanced dexterous finger manipulation and powerful grasping of common objects.
This paper presentes the overview work of Team ZJUNlict (Championship of 2014 Small Size Leauge) in 2014 RoboCup.